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Abstract

We model a health insurance market where rising cure rates for a disease may
paradoxically diminish welfare and even negate the desirability of health insurance
altogether.  In the model, rising cure rates can affect welfare in two ways: (1) directly, by
improving some individuals' health, and (2) indirectly, by influencing the mode and
parameters of the optimal insurance contract and, thus, ex post financial wealth
distribution. (“Mode” refers to the qualitative specifications of the contract—presence or
absence of indemnities and full, partial or zero coverage of treatments received. “Parameters”
refers to the quantitative features of the contracts—level of nonzero indemnities, deductibles and
premiums.)

Graboyes (2000a) compares the relative efficiency of deductibles and indemnities in
deterring low-benefit patients (those whom treatment is less likely to cure) from seeking
expensive medical care. The current paper asks how optimal insurance and associated
welfare change as curative technology improves.  Deterring some but not all patients
requires deductibles or indemnities because one’s H/L status is known to all, but not
legally verifiable.

We find that advances in curative power may reduce welfare and even eradicate
health insurance.  This is because at higher cure rates, higher indemnities and deductibles
are needed to deter patients from seeking treatment. Given certain population parameters,
higher cure rates can only reduce welfare.  The findings raise some practical, empirical,
and ethical questions; some of these issues are enumerated in the conclusion.
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1. Technological Progress Defined

In a world of expensive medical procedures and competing wants, some treatable

patients should not be treated because the opportunity costs are too great.  This assertion,

harsh to some ears, is implicitly recognized by elements of our health care system and by

private choices.  In calm moments of good health, all might agree, for example, that an

expensive, near-futile cancer treatment is not the best use of resources.  The problem is

binding ourselves to such an agreement, for when we fall ill, a slim chance at life often

trumps prior pledges.

This paper follows from Graboyes (2000a), which compared the relative desirability

of four contract structures, or “modes”: Indemnity mode (I) offers low-benefit patients

cash payoffs in lieu of treatment.1 Deductible mode (D) requires anyone seeking

treatment to pay an out-of-pocket deductible high enough to deter low-benefit patients.

Zero insurance mode (Z) provides no insurance, so no one seeks treatment.  Full

insurance mode (F) provides full coverage of treatment for high- and low-benefit

patients.

The current paper adds an additional complication—changing efficacy of medical

technology.  In the model developed here, rising cure rates can paradoxically diminish

welfare and even render treatments and health insurance inefficient.  Rising cure rates can

induce changes in optimal contract parameters (premiums, deductibles, indemnities)

within a mode; or they can induce the market to switch modes.

                                                
1 Traditional fee-for-service policies are also referred to as “indemnification” policies.  In contrast, this
paper uses “indemnity” contract to indicate a plan where patients are reimbursed in cash for a diagnosis,
rather than for a treatment.
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1.1 A Hypothetical Example

Take a thousand people whose only health concerns are found in actuarial tables and

pose the following: “In the next year, 25 of you will contract cancer.  Treatments cost

$500,000.  Because of certain physiological divisions in this population, 5 patients will

recover with certainty if treated, but the other 20 will only experience a 5% survival rate.

You can agree today to any of three options: (1) Full coverage of treatments for all 25

patients paid for by actuarially fair insurance; (2) Full coverage of treatments for the 5

high-benefit patients (“Hs”) but no treatment for the 20 low-benefit patients (“Ls”); or (3)

No insurance and no treatments.  Which option do you want?”  Table 1 provides

hypothetical data on these three options:

Table 1
Hypothetical Case, Insurance Options

1: Ls and Hs
treated

2: Hs only
treated

3: no insurance

annual premium per capita $12,500 $2,500 $0
lives saved 6 5 0
% saved by treatment 0.6% 0.5% 0%

From an individual standpoint, $2,500 buys an additional 0.5% chance of surviving

the year (assuming this is the only life-threatening prospect).  The next $10,000 only adds

another 0.1% chance of survival. Given certain utility curves, the 1,000 would agree to

option 2 while still behind a veil of good health.  The operational problem is legally

verifying who is an H and who is an L. When a year passes and 25 people have fallen ill,

each of the 20 Ls will have a powerful incentive to portray himself as an H. Without an

objectively verifiable criterion for separating Hs and Ls, the insurer will be hard-pressed

to limit coverage to Hs, even if the insurer and patients can all distinguish between Hs

and Ls.  Even if there is an objectively verifiable delimiter between the two classes, legal,
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political, and public relations concerns may make it difficult for the insurer to deny

coverage on the basis of that delimiter.

In practice, there are many ways to exclude Ls from treatment.  Utilization review,

queuing, moral suasion, redefining and refining diagnostic categories, and advance

medical directives all act as filters. Oregon’s much-publicized Medicaid plan explicitly

excluded certain low-benefit patients from treatment.  This paper focuses exclusively on

indemnities and deductibles— demand-side tools that induce low-benefit patients to

voluntarily opt out of treatment—and on the Z and F modes that do not discriminate

between high- and low-benefit patients.

1.2 Additional Problem: Technological Progress

Graboyes (2000a) derived criteria for choosing among the four modes.  The current

paper adds the additional complication of technological progress (defined by rising cure

rates), which can lead to some surprising results, which fall into two general categories:

(1) Progress causes expected welfare to decline. (2) Progress causes the optimal mode to

change in counterintuitive ways.  Table 2 expands on the previous hypothetical example,

again with made-up data:

Table 2
Hypothetical Case with Technological Progress Added

Before After No insurance
annual premium per capita $2,250 $2,050 $0
lives saved 5 5 0
deductible paid by Hs $50,000 $90,000 $0
additional lives that could have been
saved by treating all sick people

1 2 7

In Table 2, the cure rate for Ls rises, so the deductible needed to deter Ls also rises

(because probabilistically, the benefit is higher). In the “before” column, everyone pays



4

the $2,250 premium.  Hs pay an additional $50,000 out-of-pocket for treatment—just

enough to deter Ls from treatment.  In the “after” column, the cure rate for Ls has risen

from 5% to 10%.  Now, it takes $90,000 to deter Ls.  The number of lives saved is

unchanged at 5, but the ex post wealth distribution changes.  Everyone's premium is

lower, but Hs pay a $90,000 deductible instead of $50,000.  In the model developed in

this paper, the welfare improvement from the lower premium is more than offset by the

welfare loss due to less-complete risk sharing represented by the higher deductible.

Second, the model suggests that progress can change the optimal insurance

environment in some surprising ways.  Referring again to Table 2, the rising cure rates

for Ls might eliminate insurance and treatment altogether (as in the “zero insurance”

column); the welfare cost of losing a marginal .05% chance at survival might be less the

utility gain from the more desirable wealth distribution. 2  The conclusion of this paper

will itemize some of the empirical questions that this model raises, including:

• Do rising cure rates actually drive away insurance coverage? If not, why not?

• Do rising cure rates induce higher deductibles or indemnities?  If not, why not?

• Do costs associated with switching modes induce markets to select insurance which is

not generally optimal at the moment but which is optimal over time?

• Is behavior seen in this model responsible for the lack of indemnity health policies?

• Can effects described by the model skew the directions of medical research?

• How does the structure of the optimal contract affect the diffusion of medical

technology?

                                                
2 Perhaps the cure rate rises because JAMA publishes new information that improves treatment results
without raising costs—a societal learning curve.  Thus an external development could render insurance
unsustainable.
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1.3 Digression: Generalized Heterogeneity and Technological Progress

It is important to note that a restricted form of heterogeneity is a central feature of the

three essays of this dissertation.  People are either sick (Ss) or well (Ws).  Ss have either a

high cure rate (Hs) or a low cure rate (Ls).  Technological progress is also restricted.  In

the current paper, progress consists of an improved cure rate for either all Ls or all Hs in

lockstep. In Graboyes (2000c), progress occurs when population parameters change so

that some Ls become Ws, some Hs become Ws, or some Ls become Hs (denoted L→W,

H→W, or L→H).

In a more general specification, sick people could be arrayed across a continuous

distribution of cure rates (if treated).  Technological progress, too could be generalized by

allowing each sick person's cure rate to change uniquely, as suggested by Figure 1.

Figure 1 assumes a continuum of cure rates.  The arrows indicate how technological

progress affects five individuals, and we presume that this market chooses the optimal

deductible policy. (Analyzing the optimal indemnity policy would yield similar findings.)

Figure 1
Distribution of sick population across continuum of cure rates

1 2 3

4 5

0% 100%

untreated:
deductible exceeds
reservation price

treated: reservation price exceeds
deductible

cure rate if treated

density
function
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#1, #2, and #3 show three individuals whose cure rates rise. #4 and #5 show two

individuals who now never become sick at all.  Each arrow provokes different effects on

the two components of utility—ex post wealth distribution and ex post health.

#4 and #5 are equivalent to L→W and H→W from Graboyes (2000c); they involve a

shift in the ratio of sick to well people.  In contrast, progress in the current paper and

L→H progress in Graboyes (2000c) involve no change in the ratio of sick people to well

people and, thus, are in no way analogous to arrows #4 or #5.

In Figure 1, shifts #1 and #3 do not affect anyone’s ex post wealth because both

agents are inframarginal.  #3 does improve utility because that agent’s cure rate is now

higher.  In the current paper and in Graboyes (2000c), there are no untreated

inframarginal agents like #1. Ls are just on the margin, and Hs are inframarginal but

treated.

Most of the interesting results in the current paper and in Graboyes (2000c) arise from

agents crossing the threshold from left to right, as does #2. In the current paper, all Ls

shift marginally to the right. In Graboyes (2000c) (L→H), some Ls move a discrete

distance to the H reservation price.  Only when an agent crosses the dotted line do

contract parameters change, thus affecting ex post wealth distribution.

Continuous cure rates and unrestricted forms of technological progress leave us with

a great number of possible results from technological progress.  This dissertation presents

some reasons why the two special cases presented in the current paper and in Graboyes

(2000c) might be fairly realistic.  Demonstrating this empirically will be the subject of

future papers.  We note that in the more general construction (as in Figure 1), the

difference between shifting cure rates of the current paper and shifting population
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distribution of Graboyes (2000c) become blurred; the separate identities of the κs and the

πs arise from a discrete distribution.

The remainder of the paper is structured as follows: Section 2 reviews literature

related to this paper.  Section 3 reviews the assumptions, notation, and results from

Graboyes (2000a) in order to set up the problem addressed in the current paper.  Section

4 develops the model of technological progress and reports its results. (The results are

proven in the Appendix to avoid disrupting the narrative flow.)  Section 5 examines the

bimodal grouping of cure rates postulated in the model and speculates on how

technological improvements for the two groups might be related. Section 6 draws the

paper's conclusions, emphasizing the practical and empirical implications of the results.

2. Related Literature

Moral hazard, which is central to this paper, has long been linked with efficiency in

health care production and with the direction of technological progress in medicine.

Zeckhauser (1970) described why moral hazard is an inevitable by-product of health

insurance contracts that spread risks and why moral hazard creates disincentives for

efficient production.  In creating the optimal health insurance policy, he wrote, “The best

that can be done, as we would suspect, is to find a happy compromise with some risk-

spreading and some incentive.”

Feldstein (1973) refined the notion that moral hazard-induced inefficiencies would

lead to overspending on health care itself.  In doing so, he estimated the level of patient
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copayment (deductible) that would achieve the equivalent of Zeckhauser's happy medium

between risk-sharing and efficiency.

To this framework, Goddeeris (1984) added technological innovation and found that

under the right circumstances, scientific progress could reduce welfare.  His paper

addressed the ways in which insurance could bias the direction of technological progress

(research and development, technology diffusion). Baumgardner (1991) carried this

farther by examining the relationships between technical change, welfare, and optimal

class of insurance contract (“mode” in this paper), with a focus on asymmetric

information and imperfect agency.  He contrasted how these relationships would appear

under conventional (fee-for-service) insurance policies and under managed care policies.

A similar comparison of demand-side and supply-side incentives is the theme of Ellis and

McGuire (1993) who link technological progress to increasing medical expenditures in

the United States.  They ask how supply-side incentives might hold down the rate of

technological progress and, therefore, of overall costs—with an implicit assumption that

progress is cost-increasing.  Cutler and Sheiner (1997) similarly ask how managed care

might hold down the rate of technological progress and, therefore, costs.

In many of these papers, an explicit or implicit idea is that of the cost-increasing

technological imperative.  That is, writers assume or discover the validity of the

technological imperative.  This concept, described by Pauly (1986, p. 664) holds that a

health care technology, once it exists, tends naturally and unstoppably to diffuse

throughout the economy.  Sometimes, the technology is used well beyond its optimal

level of provision.  A corollary to many of these findings is that moral hazard and

imperfect agency bias technological progress toward cost-increasing innovations.  Many
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writers blame the development and diffusion of such technologies for the rapid rise in

health care expenditures in the United States since the 1960s.  Cutler (1996, p. 35) writes

that, “the medical care marketplace is driven by overuse of medical resources, and the

rapid development and diffusion of new technologies.

The current paper looks entirely at demand-side incentives for efficiency.  Whereas

Zeckhauser and Feldstein postulate deductible policies, we compare deductible policies

with indemnity policies (and with full insurance policies and with zero insurance).

Indemnity policies have played a small role in health insurance in recent years decades,

but they were mentioned by Arrow (1963, p. 962), and their renewed use has been

suggested by Gianfrancesco (1983) and by Feigenbaum (1992).

In some ways, the model developed here goes in the opposite direction from those of

Goddeeris and Baumgardner.  Goddeeris stresses the influence of insurance on the

directions of technological change.  Here, we look in the opposite direction, focusing on

the effect of autonomous technological change on health insurance.  Baumgardner

compares traditional insurance with managed care.  Here, we look only at different

demand-side mechanisms.

The conclusion discusses how our results might link back to affect the rate and

direction of progress.  Mutual determination of technological progress, health care

provision, and insurance contracts was described by Weisbrod (1991).  We identify some

conditions under which insurance might impede rather than encourage technological

advance.  This might happen because in the model presented here, certain technological

advances will eventually lead to abandonment of health insurance altogether and, along

with it, usage of the previously insured treatments.  So, it is natural to suppose that
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forward-looking investors might shy away from investing in technologies that will

eventually be dropped from coverage and usage.  We might find that insurance biases

progress toward treatments which do not appear likely to be abandoned due to changes in

the primitive assumptions listed in the notation section below.

The model developed here bears some resemblance to the market for lemons

postulated by Akerlof (1970) in that the market is characterized by bimodal

heterogeneity.  Here, though, information is symmetric; rather, it is the ability to respond

to information that is asymmetric.

The current paper more closely resembles the literature on “tagging.”  In Akerlof

(1978), the goal is to construct the optimal feasible redistribution of wealth; lump-sum

welfare payments are made to “deserving” people, financed by general taxation.  The

model optimizes by restricting welfare payments to a small group, defined (“tagged”) by

a variable that acts as a proxy for “deserving.” (Race-based set-asides are an example.)

By limiting the number of eligible recipients, tagging allows high welfare payments to be

paid to the deserving group, financed by the rest of the population at low marginal tax

rates.   In the current paper, high-benefit patients are “deserving” while low-benefit

patients are part of a “non-deserving” population that also includes well people. Here,

indemnities and deductibles induce people to tag themselves.  The distribution of

population between high- and low-benefit patients determines whether a high-lump sum

benefit (the treatment) can be financed through a low marginal “tax” rate (namely, the

insurance premium.)

Finally, this paper bears some resemblance to the “loyalty” or “shirking” literature, as

in Akerlof (1983).  In that literature people must decide whether or not to shirk on the
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job; people who shirk run some probability of being fired.  One way to generate honesty

is to require workers to post a surety bond that is forfeited if fired.  In the current paper,

deductibles and indemnities serve essentially the same purpose.  Paying a deductible or

forfeiting an indemnity serves as the bond guaranteeing the value for treatment that the

patient claims.  In discussing “loyalty filters,” Akerlof (1983) describes how experience

changes one's loyalty, in turn, affecting one's economic strategies.  Here, it is the quality

of medical practice rather than personal experience that changes behavior, but with

similar results.

3. Setup: Review of “Our Money or Your Life”

The setup for this paper comes from the assumptions and results of Graboyes (2000a).

That paper asks when lump-sum indemnities are more efficient than deductibles at

deterring Ls from seeking expensive treatment.  This review serves as the point of

departure of the current paper.

3.1 Assumptions

Graboyes (2000a) begins with the following assumptions:

(I) Ex post utility is a state-dependent Von Neumann-Morgenstern function where
U(y; w)=U(y; s)+k, with Uy>0 and Uyy<0. y is ex post monetary wealth, w and s
are the two values of a binary variable representing well and sick states, and k is a
constant denoting the difference in utility between the two states for any y.  This
functional form means that utility is state-dependent, but marginal utility is not.

(II) The insurance policy protects against a single illness. It is a carveout—similar to a
dread disease policy, although dread disease policies' benefits are often contingent
upon a hospital stay or other medical service.

(III) Adverse selection is not an issue.  All agents are equally likely to contract the
illness.  That probability is known both to subscribers and insurers.
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(IV) There is no ex ante moral hazard; the presence or lack of insurance does not
influence the behavior of insured parties before they contract the illness or, hence,
the incidence of disease.

(V) Diagnosis is binary and unambiguous and requires no costly monitoring.
(VI) Sick people are classified as Hs or Ls, based on their probability of cure if treated.

An individual's likelihood of cure, κH or κL, is costlessly observable by both the
patient and the insurer.  However, the prognosis is not legally verifiable, so
patients can act on the information, but insurers cannot.  The insurer cannot, for
example, promise to pay for chemotherapy if the probability of cure is 5%, but not
if it is 1%, though the patient may accept or decline treatment on the same basis.
This is because patients cannot bind themselves to forgo treatment if they are Ls.

(VII) There are no loading costs or other fixed costs.
(VIII) The cost of treatment is large enough that no one can purchase it without

insurance.  In other words, there is no borrowing or capital market.

3.2 Notation

Both Graboyes (2000a) and the current paper use the following notation:

Initial conditions: These parameters define the state of the world:

πW percent of subscribers who are well
πH percent of subscribers who are sick and will experience a high cure rate if treated
πL percent of subscribers who are sick and will experience a low cure rate if treated
πS percent of subscribers who are sick: πH+ πL

κH the cure rate for Hs
κL the cure rate for Ls
y0 initial wealth of all agents
x the cost of treatment
k the welfare loss of having the disease; it is completely reversed if cured

Contract parameters (indemnities, deductibles, premiums) and ex post wealth:

i A cash indemnity large enough to deter Ls from seeking treatment
i* The minimum cash indemnity large enough to deter Ls from seeking treatment
d A deductible large enough to deter Ls from seeking treatment
d* The minimum deductible large enough to deter Ls from seeking treatment
pi* The insurance premium paid by all subscribers under the indemnity contract
pd* The insurance premium paid by all subscribers under the deductible contract
pf The insurance premium paid by all subscribers under the full-insurance contract
y ex post wealth; y0 minus premiums and deductibles paid or indemnities received

Welfare under different modes: Mode H is infeasible because insurers cannot be

legally bound to refuse treatment if they are found to be Ls. I, D, Z, and F are feasible:
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Ûh Mode H: Hs 100% covered, Ls not treated; this mode is infeasible.
Ûi Suboptimal indemnity; deters Ls, but not Hs, from seeking treatment.
Ûi* Mode I: Optimal indemnity; deters Ls, but not Hs, from seeking treatment.
Ûd Suboptimal deductible; deters Ls, but not Hs, from seeking treatment.
Ûd* Mode D: Optimal deductible; deters Ls, but not Hs, from seeking treatment.
Ûz Mode Z: Zero insurance; neither Hs and Ls are treated
Ûf Mode F: Full insurance; treatment for Hs and Ls 100% covered
Û MAX[Ûi*, Ûd*, Ûz, Ûf]; the optimal policy across all modes
U(-;w) State-dependent utility function in well state
U(-;s) State-dependent utility function in sick state

3.3 Results: General Case

The above assumptions yield the following results:

[1] Ûi*>Ûi ∀ i>i* The minimum deterrent indemnity is the optimal indemnity.

[ch.2, (P.2)]

[2] Ûd*>Ûd ∀ d>d* The minimum deterrent deductible is the optimal deductible.

[ch.2, (P.4)]

[3] i*
<
=
>

x ⇒ Ûz
<
=
>

Ûi* (The desirability of I versus Z depends on the relative size of i*

and x.) [ch.2, (P.17)]

[4] ( ) ( )kw;pyUÛ HHSH0h κπ−π−−= , where p xH H= π

Equation [4] shows the unattainable utility that would prevail if Ls could be costlessly

deterred from receiving treatment.

[5] 
( ) ( ) ( ) ( )

( ) ( )kw;pyU

kw*;ipyUw;pyU1Û

LLHHS*i0

HHS*i0L*i0L*i

κπ−κπ−π−−=

κπ−π−+−π+−π−=
,where

p x ii H L* *= +π π  [ch.2, (1.5)]
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[6] 
( ) ( ) ( ) ( )

( ) ( )kw;pyU

kw*;dpyUw;pyU1Û

LHHHS*d0

HHS*d0H*d0H*d

κπ+κπ−π−−=

κπ−π−−−π+−π−=
, where

p x dd H H* *= −π π [ch.2, (3.5)]

[7] ( ) kw;yUÛ S0z π−=

Equation [7] shows the utility prevailing if no insurance exists and no one is treated.

[8] ( ) ( )$ ;U U y p w kf f S H H L L= − − − −0 π π κ π κ  , where xp Sf π=  

Equation [8] shows the utility prevailing if everyone is insured and treated.

[9] Ûd*
<
=
>

 Ûi* iff U(y0-πHx+πHd*;w)-U(y0-πHx-πLi*;w) 
<
=
>

πSκLk] [ch.2, (P.5)]

3.4 Results: Logarithmic Specification

We obtain stronger results by restricting the utility function to a logarithmic

specification, where U(y; w)=ln(y) and U(y; s)=ln(y)-k.3  In results (4)-(9), U(⋅) can be

replaced by ln(⋅). The logarithmic specification also yields the following results:

[10] 
( )( )

( ) L

H xy
i

πφ
πφ

11
1

* 0

−+
−−

= , where kLeκφ =  (the optimal indemnity) [ch.2, (P.6)]

[11] 
( )( )

( ) H

H xy
d

πφφ
πφ

1
1

* 0

−−
−−

= , where kLeκφ =  (the optimal deductible) [ch.2, (P.7)]

[12] i*>d* [ch.2, (P.16)]

[13] If πL≥πH, then ** id UU >  under all circumstances [ch.2, (P.9)]

[14] **
ˆˆ

id UU
<
=
>

 iff 
( )

( )[ ] 1
1

11
1

H

L

LH <
=
>

φπ−φ−φ
π−φ+

−π+π  [ch.2, (P.8)]
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This is the boundary condition that determines the preference ordering between D and I.

[15] In the limit, as κL→0, Ûi*
<
=
>

Ûd* iff πH
<
=
>

πL. [ch.2, (P.12)]

4. The Model: Effects of Technological Progress on Optimal Insurance

The current paper extends the results from section 3 to ask how the optimal insurance

policy changes as medical science makes progress in curing disease.  As in results (10)

through (15) above, we limit the analysis to a logarithmic utility function.  This section

describes how deductibles, indemnities, premiums, welfare, and choice of mode respond

to changes in the cure rates for Ls and Hs (κL and κH, respectively).  Under certain

conditions, medical progress causes welfare to decline and may even render health

insurance and treatment undesirable altogether.  The effects of increasing κH prove to be

less paradoxical than does increasing κL.  All results described in this section are proven

in the appendix.

4.1 κL rises, mode unchanged

This section asks how the optimal insurance contract and welfare change if the

insurance mode does not change.  So, this section does not consider the case, for

example, where an indemnity policy is optimal before κL rises, and a deductible policy is

optimal afterward.  Table 3 shows the following results:

                                                                                                                                                
3 This specification is similar to that used in Neipp and Zeckhauser (1985).
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Table 3
Changes in optimal contract parameters and welfare resulting from

changes in κL, assuming the optimal mode remains unchanged
      Mode indemnity deductible premium welfare
I: Indemnity policy 1:∂i*/∂κL>0 ——— 2: ∂pi*/∂κL>0 3: ∂Ûi*/∂κL<0
D: Deductible policy ——— 4:∂d*/∂κL>0 5: ∂pd*/∂κL<0 6: ∂Ûd*/∂κL<0
Z: Zero coverage ——— ——— ——— 7: ∂Ûz/∂κL=0
F: Full coverage for

Hs and Ls
——— ——— 8: ∂pf/∂κL=0 9: ∂Ûf/∂κL>0

The numbers 1-9 preceding derivatives and statements correspond to the numbers
of propositions in the Appendix.

In mode I, a rise κL increases the minimum deterrent indemnity i* because,

probabilistically, the value of treatment rises for Ls.  The premium also rises because it

must now cover a larger deterrent indemnity.  Most importantly, welfare declines.  Ls end

up better off because, while they still do not benefit directly from the medical treatment,

they now receive a larger indemnity to deter them.  However, the increase in the Ls'

welfare is more than offset by a decrease in welfare among Ws (well people) and Hs who

now have to pay a larger premium to cover the larger indemnity.  Like Ls, Ws and Hs

receive no health benefits from the new technology.  In other words, the only effect of

scientific progress here is to drive individuals farther from the ideal of equal marginal

utility of wealth in all health states.

In mode D, the deductible rises because, again, the rise in κL makes treatment more

valuable to Ls; deterring them now requires a larger marginal cost.  The premium drops

this time, because Hs bear more of the cost out-of-pocket.  As in the previous case,

welfare declines.  Ws and Ls are better off because the premiums are lower (Ls still go

untreated); but these gains are more than offset by the welfare loss of the Hs, who must

pay a larger share of the cost out-of-pocket.
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In mode Z, welfare is unaffected by a change in κL.  Ls do not benefit from the new

technology, and with no indemnities, deductibles, or premiums, no wealth shifts result.

Finally, under F, the premium is unaffected because the contract includes no deterrent

mechanisms. Welfare increases because, while there are no ex post wealth shifts, some Ls

now recover because of the increased cure rate.

A real-world analog of this phenomenon might be found in rising out-of-pocket

shares of pharmaceutical costs.  If the efficacy of drugs rises for low-benefit patients,

insurers could raise the out-of-pocket costs.  In the end, the higher price continues to

deter low-benefit patients, and high-benefit patients are now displeased by the higher

deductible, despite the lower premium.

4.2 κL rises, mode changes

The preceding section examined how changes in κL might affect welfare when there

is no mode change.  This section looks at how changes in κL might affect the optimal

insurance mode (e.g., shifting the optimal class of policy from an indemnity policy to a

deductible policy).  Figure 2 illustrates how the optimal mode is determined.  The optimal

mode is always the uppermost of the four curves, so Û=MAX[Ûi*, Ûd*, Ûz, Ûf].  In this

example (parameters at right), I is the preferred mode when κL is near 0.  As κL rises

toward 100%, I gives way to D, then Z, and then F.  As κL rises, welfare diminishes

steadily until the point that insurance is abandoned altogether. Then, eventually, full

insurance becomes optimal and welfare rises once again.  Note that with these particular

parameters, welfare is at its maximum when κL is near 0.  Any improvement in Ls’

prospects diminishes welfare from that point.
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Moving through the modes, welfare is a continuous function of κL.  Marginal utility is

discontinuous at mode shifts, however.  Propositions 10 through 13 in the Appendix

demonstrate that as κL rises, only certain sequences of optimal modes are possible.

Specifically:

Prop. 10: Ceteris paribus, as κL rises:
Z cannot precede D, Z cannot precede I, F cannot precede Z, F cannot
precede D, and F cannot precede I

Prop. 11: Ceteris paribus, as κL rises, D cannot precede I
Prop. 12: As κL→0, F cannot be preferred to I or D

Figure X
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Prop. 13: As κL→κH, D can’t be optimal

So as κL climbs from 0 toward κH, the optimal mode can only shift in a rightward manner

through the modes shown in Figure 3 (e.g., I→Z→F is possible, but not F→D or

D→Z→I).

Table 4 shows eleven possible optimal mode sequences.  Each row contains a

sequence and an arbitrary set of parameters that will generate that particular

sequence.  So, for example, in the seventh row of data, parameters (k, κH, πL, πH, y0,

x)=(6, 99%, 10%, 20%, $60,000, $180,000) will give rise to the sequence I→D→Z

as κL rises from 0% to 99%:

I
D

Z
F

Figure 3
Succession of optimal modes as κL rises

I: Full coverage for Hs. Indemnity in lieu of treatment for Ls.
D: Coverage for Hs after paying deductible. No coverage for Ls.
Z: No coverage for Hs or Ls.
F: Full coverage of Hs and Ls.
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Table 4
Possible modal sequences as κL rises from 0 to κH

(values are arbitrary examples of each sequence)
Modal

sequence
k κH πL πH y0 x

Z 5 99% 3% 5% $100,000 $500,000
I Z 7 83% 4% 5% $100,000 $500,000
I F 3 99% 1% 10% $100,000 $200,000

D Z 7 99% 6% 5% $100,000 $500,000
D F 6 99% 10% 1% $100,000 $200,000

Z F 3.7 40% 2% 4% $100,000 $150,000
I D Z 6 99% 10% 20% $60,000 $180,000
I D F 3 99% 1% 4% $60,000 $150,000
I Z F 4 90% 1% 9% $100,000 $300,000

D Z F 7 99% 6% 3% $100,000 $500,000
I D Z F 7 99% 3% 5% $100,000 $500,000

From various entries in Tables 3 and 4, we can see that technological progress can

either leave welfare higher, lower, or unchanged.  In Table 4, moving through the

sequence D→Z, welfare will end lower than it began.  The sequence Z will leave welfare

unchanged.  And Z→F will leave things unambiguously better off.

Any number of real-world analogs come to mind. Providers may begin offering an

alternative treatment that improves the prospects for low-benefit patients. If Ls greatly

outnumber Hs, then the insurer (or employer in the case of employer-based plans), may

seek to exclude the alternative treatment as “experimental.”  Hence, we could

hypothesize that the “experimental” designation is sought more often when the number of

low-benefit patients is large relative to the number of high-benefit patients.  Or, the

insurer or employer may seek to redefine the treatment as medically unnecessary.  As

gastric bypasses have become effective weight-loss treatments, some insurers have

sought to define some cases as “not medically necessary” and, thereby, excluded from

treatment.  Other procedures that insurers have recently sought to exclude include
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reductive mammoplasty and orthognathic surgery, which some insurers have sought to

redefine as “cosmetic.”4

4.3 κH changes, mode does not

This section examines how the optimal health insurance contract is affected by a

change in κH—the probability of cure for Hs who receive treatment.  Unlike the κL

results, the κH results are mostly free of paradoxes—i.e., progress is usually a good thing.

Table 5 summarizes the results that are proven in the appendix. The numbers 14 through

22 preceding the derivatives correspond to the numbered propositions.

Table 5
Changes in optimal contract parameters and welfare resulting from

changes in κH, assuming the optimal mode remains unchanged
      Mode indemnity deductible premium welfare
I:Indemnity
policy

14:
∂i*/∂κH=0

——— 15: ∂pi*/∂κH=0 16: ∂Ûi*/∂κH>0

D:Deductible
policy

——— 17: ∂d*/∂κH=0 18: ∂p*/∂κH=0 19: ∂Ûd*/∂κH>0

Z:Zero coverage ——— ——— ——— 20: ∂Ûz/∂κH=0
F:Full coverage

for Hs and Ls
——— ——— 21: ∂pf/∂κH=0 22: ∂Ûf/∂κH>0

The number preceding each derivative refers to the proposition that proves that cell.

                                                
4 This paragraph's three examples were suggested by Dr. Douglas Hadley, regional medical director of an
HMO.
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In no case does a change in κH alter the contract parameters (i.e., indemnity, deductible,

or premium).  This is intuitive, since these parameters are set to alter behavior in Ls, not

Hs.  In no case does a rise in κH cause welfare to decline, as sometimes occurs with a rise

in κL.

4.4 κH changes, mode changes

Potential mode shifts from a rise in κH are few and simple.  Proposition 23 shows that

the mode can shift from Z to I, D, or F.  Ceteris paribus, no other shifts are possible.

Table 6 gives arbitrary examples in which preferences do shift from Z to I, D, and F.  For

example, in the final row, κH rises from 80% to 90%; at the former value, zero insurance

is optimal, while at 90%, full insurance for Ls and Hs is optimal.

Table 6
Possible modal sequences as κH rises from its initial value to a new value

(values are arbitrary examples of each sequence)
Modal

Sequence
initial

κH

new
κH

k κL πL πH y0 x

Z 20% 90% 3 10% 4% 5% $100,000 $500,000
I 75% 90% 3 10% 4% 5% $100,000 $200,000

D 30% 90% 10 10% 4% 5% $100,000 $200,000
F 30% 90% 10 20% 4% 5% $100,000 $200,000

Z I 80% 90% 7 5% 4% 5% $100,000 $500,000
Z D 80% 90% 7 10% 4% 5% $100,000 $500,000
Z F 80% 90% 8 75% 4% 5% $100,000 $500,000

5. Bimodal Heterogeneity with Independent Changes in κL and κH

This paper rests on two quite restrictive postulates: (1) Sick people come in exactly

two flavors, Ls and Hs, each of which shares a common cure rate; and (2) The cure rates
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κL and κH  vary independently.  This section discusses whether these postulates are

reasonable and how they might be relaxed in future papers.

The first postulate has both a qualitative and quantitative aspect.  Qualitatively, it

assumes that the distribution of cure rates is discrete rather than continuous.

Quantitatively, it assumes that there are only two of these discrete cure rates.  One future

line of research will be to ask whether physicians see a continuum of cure rates ex ante or

whether they only perceive a small number of discrete groups, as modeled here.

Assuming two cure rates, or at least a small number of discrete cure rates, may be a

reasonable assumption.  One reason for having discrete cure rate groups could be that

diagnostic categories bundle together a countable number of different conditions.  In

other words, health insurance might define “lung cancer” and specify levels of financial

coverage; but medically, “lung cancer” might actually refer to several distinct conditions,

treated similarly, but with different rates of success.  Alternatively, a countable number of

physiological factors (e.g. age, gender, comorbidities) might account for the differences

in cure rates. Two cancer cases may be identical in terms of indicators that comprise the

diagnosis and trigger the insurance company's obligation; treatment regimes and costs

may also be identical.  But, for instance, the cure rates for acute lymphatic leukemia are

dramatically different in juveniles and in adults. De facto, one could argue that acute

lymphatic leukemia in a 45-year old is a different disease than acute lymphatic leukemia

in a 5-year old, though the manifestation and treatment may be similar. (Alternatively,

differing cure rates may be functions of differing etiologies.) This is really an incomplete

contracts problem; the insurer cannot specify all possible combinations of physiological

conditions.
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A change in medical science's ability to treat comorbidities may change cure rates of

the primary illness without affecting either the numbers of sick people or the cost of

treating the illness in question.  (Dealing with comorbidities might be quite inexpensive

in comparison with the primary illness of concern.)  Real-world analogs can be found in

disease management.  For example, the control of diabetes mellitus greatly affects the

prognosis for a heart attack patient.  Therefore, some disease management companies

subsidize their patients’ diabetes management program as a way of improving the

prospects in the event of a heart attack.5

One sidenote: Changes in the incidence of comorbid diseases may yield some

interesting paradoxes of their own.  In the cardiac/diabetes case above, for example,

suppose the deductible is set just high enough to deter Ls from seeking some hypothetical

cardiac treatment.  Better control over diabetes could raise the cure rate for cardiac

patients, thus making the cardiac treatment more valuable to patients.  An insurer

covering cardiac care would find demand increasing for treatments among Ls—leading to

higher deductibles or indemnities and, possibly, to abandonment of cardiac insurance

altogether.6

As for the quantitative issue: it seems likely that a model with more than two cure

rates would not behave too differently from the model developed here, since indemnities

and deductibles only work through one marginal population group.  It may be that a

                                                
5 This example was suggested by my colleague, Dr. Richard Schieken, Chairman of the Department of
Pediatric Cardiology, Medical College of Virginia Campus, Virginia Commonwealth University.
6 It is interesting, though not necessarily realistic, to carry this argument to conspiratorial lengths.  In a
world of multi-illness policies, a company could subsidize diabetes control as a way of financially
destabilizing the cardiac care insurer (who might be a competitor overall).  We could label this
phenomenon “predatory progress.”
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model with more than two cure rates would behave similarly to the two-rate model, but

that the results would be more cumbersome mathematically.

The second postulate employed in this paper holds that κH and κL change

independently.  This brings us to the question of how changes in κL and κH might be

related.  Should we assume that they change together additively, multiplicatively, or

otherwise?  There are two good reasons for looking separately at the changes in  κL and

κH.  The first reason is because we can. The effects of changes in the two are entirely

separable, thus rendering the model more general.  We can easily impose restrictions on

the relationship between the two changes—∆κL=∆κH for instance.  In this case, we could

simply sum the derivatives in Tables 3 and 5 to obtain the changes in contract parameters

and welfare.  More complex κL-to-κH relationships simply require more complex

functions of the Table 3 and Table 5 data.

It is not clear, though, that real-world medical advances affect low-benefit and high-

benefit patients equally, or even similarly.  Should the cure rates move together

additively [(κL, κH)→(κL+ξ, κH+ξ)] or multiplicatively [(κL, κH)→(ξκL, ξκH)]?  Do the

rates converge over time or do they diverge?  Most likely, the answers vary from disease

to disease, and our model allows us to experiment with all possibilities.

One reason for avoiding the notion of a continuum of cure rates is that it is not clear

how we should assume these rates change with technological innovation.  Would a

technological improvement raise the cure rates uniformly across the distribution? If so

would it do so additively [(κn)→(κn+ξ)∀n], multiplicatively [(κn)→(ξκn)∀n], or by some

other rule?  These are all empirical questions to be addressed in later papers.
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6. Conclusion

This paper has explored ways in which one type of technological progress can affect

health insurance markets.  We found that improvements in medical science’s ability to

cure illness can, under certain theoretical conditions, lead to reduced welfare and, in some

instances, to abandonment of health insurance and medical treatment altogether.  In this

section, we review the findings of the paper and outline some further questions that the

paper raises.

6.1 Review of the Results

This paper began with a fairly general set of assumptions and then derived underlying

conditions rules for specifying the optimal insurance contract.  A central feature of the

model is a bimodal population distribution with respect to curability.  The model

examines how the optimal contract changes as the cure rates for both groups change.

(The two groups are Ls, who experience low cure rates when treated, and Hs, who

experience high cure rates when treated.)

As long as treatment is socially undesirable for Ls (because the cost of treatment

outweighs the expected benefit of treatment), higher cure rates for Ls will either diminish

welfare or, at best, leave it unchanged.  Rising cure rates for Hs, in contrast, never

diminish welfare.  A rise in either cure rate can change the mode of the optimal health

insurance contract, but only in specific directions.  So, for example, a rising cure rate for

Ls can change the optimal contract from an indemnity contract to a deductible contract,

but not the reverse.  In the model, the effects of changes in κL and κH are entirely

separable.
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In sum the paper provides a set of rules enumerating how the optimal insurance

contract can and cannot change, depending on parameters describing wealth, medical

technology, population characteristics, and the welfare effects of disease.

6.2 Implications and Further Research

The findings of this paper suggest a number of directions for continued research.  The

results outlined above have implications with respect to the behavior of insurance

markets, research and development and public policy, and health care delivery and

overall expenditures.  Following are some of the questions that the paper suggests, each

of which can be the subject of future research:

Does medical progress actually drive away insurance? Insurers don't generally

announce that they are dropping coverage of a particular disease.  The market may do so,

however, by subtle means. Utilization review can exclude low-benefit patients, though

that may not be the explicitly stated purpose. And excluded-by-means-of-UR may be

only imperfectly correlated with low-benefit.  In a legal environment where laws and

courts frown on certain kinds of discrimination, less-than-perfect correlation between the

determinants and the exclusion may be good.

Refining the definitions of diagnostic categories is one way of excluding patients

whose conditions might previously have been covered by way of “DRG creep”

(stretching a diagnosis so that a patient falls within a covered category).  In Table 2,

rather than raising the deductible so high, it might be better to simply redefine Ls as

having an altogether different diagnosis—one whose treatments are not covered,
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assuming that redefinitions are feasible. (This solution may entail costly monitoring,

which we have omitted from this analysis.)

Restricted supply of health care may be a means of discouraging low-benefit patients

from receiving treatments.  Anecdotally, there are stories of insurers who routinely refuse

claims, knowing that some patients (presumably low-benefit ones) will be driven away

by the nuisance costs of pursuing a rightful claim.  In the case of end-stage care, queuing

with a non-random position in line would obviously be a way to tilt treatments toward

high-benefit benefits.  While a particular insurer may not explicitly drop coverage for

illnesses, employers may shift their group policies to insurance plans with exclusionary

clauses.

If medical progress doesn’t drive away insurance, then why not?  One

explanation may lie in the public choice domain; people who share a given illness may be

especially good at lobbying political authorities for continued coverage.  This might help

explain why health insurance tends to bundle together the risks of many diseases.

(Adverse selection is another factor that may induce bundling.) Some treatments will

inevitably become too popular (and hence financially burdensome on subscribers and

insurers).  If we know in advance that insurers can't drop coverage, then it makes sense to

bundle risks of many diseases, knowing that some illnesses will turn out to be financial

winners and others financial losers for the insurer (and, indirectly, for the subscribers).

This does raise questions, though, about whether the markets with temporary excess rates

of profit are contestible.

In the real world, do rising cure rates actually lead to higher deductibles, higher

indemnities or abandonment of health insurance coverage?  If κL rises so that optimal
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contracts pass through the sequence I→D→Z→F, the model predicts a rising indemnity,

followed by a shift to a rising deductible, followed by abandonment of insurance,

followed by full insurance.  The empirical question is whether anything like this sequence

actually occurs in health insurance markets.  In fact, we generally do not see deductibles

or indemnities continually adjusting, perhaps because there are costs associated with such

repricing—or even varying the deductible or indemnity from disease to disease.

(Explaining changes or complex schedules to consumers might entail significant costs.)

So, costly repricing might suggest deductibles or indemnities set to maximize insurers'

profits over time, rather than at the instant.  So over time, the deductible or indemnity

would initially be set higher than and then lower than levels that are socially desirable in

the short run.

Do costs associated with switching modes influence insurers to stick with more

stable contract modes, even though they may be less efficient in the short-run? This

is a variation on the previous issue. Suppose an indemnity contract is optimal today but

insurers anticipate a rise in κL that will render a deductible contract superior in the future.

Will insurers avoid the indemnity contract today, rather than endure the costs of

switching to a deductible policy in the future? The dynamics of such strategies could be

quite complex, incorporating discount rates and expected technology growth rates.

Are indemnities seldom seen in actual contracts because of problems suggested

by this model? Have rising cure rates led to switches from indemnities to other

contract modes? Graboyes (2000a) reviewed some evidence that indemnity contracts

were once far more common than they are today. In the model presented in this paper, a

narrowing of the cure rates between Ls and Hs tend to render indemnity contracts
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suboptimal.  The question, then, is whether these dynamics are, in fact, responsible for

the disappearance of such indemnity contracts.  In other words, the model suggests that

wide variation in cure rates between different population groups makes indemnities more

attractive than deductibles.  As cure rates converge and populations become more

homogeneous with respect to curability, indemnity contracts should give way to

deductible contracts.  One question to explore is whether the disappearance of

indemnities coincided with a lessening of variability of cure rates for various diseases.

Can the effects described in the model skew the directions of medical research?

The model predicts that in some instances, advances in medical technology will not be

used.  Improved treatments for Ls will benefit no patients (and hence, no providers) if

insurance continues to exclude Ls from treatment.  In such cases, the developer of the

new technology would get nothing from his work.  So, knowledge of future market

conditions may skew research toward improvements in the treatment of Hs or toward

improvements in markets where Ls do get treated. For example, an expected sequence of

D→Z might yield very different direction for R&D than would an expected sequence of

D→F.  With D→F (which is the scenario described earlier in conjunction with Table 2),

the researcher who develops the new and improved technology would never gain

financially from it, because it is never actually used.  Empirically, we might expect to see

more progress in markets where the numbers of Ls are small, rather than markets with

many Ls.

This triage-via-R&D raises some normative questions related to equity: If R&D is

publicly financed, would it be desirable to help Hs and effectively withhold the
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technology available to Ls?  And if not, is some sort of second-best corrective

mechanism called for (e.g., a subsidy for Ls wishing treatment)?

How does the structure of the optimal contract (and of optimal contracts

anticipated in the future) affect the diffusion of medical technology?  Weisbrod

(1991) noted that diffusion of medical technology through society depends in part upon

the structure of health insurance.  Suppose D optimal at present.  Hs are receiving

treatment, but a rising κL will soon render Z optimal.  Once this happens, the model

suggests that this medical procedure will be abandoned.  This is because ex ante, no one

will wish to pay the premium necessary to insure against the disease and ex post no one

will be able to afford the treatment.  Here, technological progress will result in a sort of

negative diffusion—the disappearance of the procedure.  If insurers maximize over time,

rather than instantaneously, we might see a tendency to avoid procedures that will one

day become uneconomical to provide. The empirical question is whether we can predict

such biases from environmental factors (population distributions, treatment costs, etc.).

Additional research questions: Finally, this paper has focused on the effects of

progress in one area (curative procedures) of medical technology.  We can equivalently

ask how optimal contracts change as we perturb other environmental parameters.  These

would include improvements in preventive medicine (a reduction in πL or πH), palliative

techniques (a reduction in k), production efficiency (a reduction in x), and overall wealth

(a rise in y0).



32

REFERENCES

Akerlof, George A. 1970. The market for “lemons”: Quality uncertainty and the

market mechanism.  The Quarterly Journal of Economics 84:488-500.

____________. 1978. The economics of “tagging” as applied to the optimal

income tax, welfare programs, and manpower planning. American Economic

Review, 68: 8-19.

____________.  March 1983. Loyalty filters. American Economic Review, 73: 54-

63.

Arrow, Kenneth J. 1963. Uncertainty and the welfare economics of medical care.

American Economic Review 53: 941-973.

Baumgardner, James R. 1991. the interaction between forms of insurance contract

and types of technical change in medical care.  RAND Journal of Economics

22-1: 36-53.

Cutler, David and Louise Sheiner. 1997. Managed care and the growth of medical

expenditures. NBER Working Paper Series #6140.

Cutler, David M. 1996. Public policy for health care. NBER Working Paper

#5591.

Ellis, Randall B. and McGuire, Thomas G.  1993.  Supply-side and demand-side

cost sharing in health care. Journal of Economic Perspectives 7:135-152.



33

Feigenbaum, Susan. 1992. “Body shop” economics: What's good for our cars may

be good for our health. Regulation: The Cato Review of Business and

Government  15(4).

Feldstein, Martin S. 1973. The welfare loss of excess health insurance. Journal of

Political Economy 81:251-280.

Fuchs, Victor R. 1986. The Health Economy. Cambridge: Harvard University

Press.

Gianfrancesco, Frank D. 1983. A proposal for improving the efficiency of

medical insurance. Journal of Health Economics 2:175-184.

Goddeeris, John H. 1984. Medical insurance, technological change, and welfare.

Economic Inquiry 22:56-67.

Graboyes, Robert F. 2000a. Our money or your life: Indemnities vs. deductibles

in health insurance. Federal Reserve Bank of Richmond Working Papers.

Graboyes, Robert F. 2000c. Medicine worse than the malady: Cure rates,

population shifts, and health insurance. Federal Reserve Bank of Richmond

Working Papers.

Neipp, Joachim and Richard Zeckhauser. 1985. Persistence in the choice of health

plans. In Advances in Health Economics and Health Services Research, ed.

R.M. Scheffler and L.F. Rossiter 6 47-72.

Weisbrod, Burton A. 1991. The health care quadrilemma: An essay on

technological change, insurance, quality of care, and cost containment.

Journal of Economic Literature 29:523-552.



34

Zeckhauser, Richard. 1970. Medical insurance: A case study of the tradeoff

between risk spreading and appropriate incentives. Journal of Economic

Theory 2:10-26.



35

APPENDIX

This Appendix has four sets of proofs.  Section A.1 demonstrates how changes in κL

affect indemnities, deductibles, premiums, and welfare under each of the four relevant

modes.   Section A.2 demonstrates that changes in κL cannot induce certain mode

sequences.  A.3 demonstrates how changes in κH affect indemnities, deductibles,

premiums, and welfare under each of the four relevant modes.   Section A.4 demonstrates

the mode sequences that changes in κH cannot induce.  Throughout this Appendix,

numbers in square brackets (e.g., [10]) refer to the equations in Section 3 of the main text

of this paper.  Equations introduced in the Appendix are numbered in the form (x.y).

A.1  κL changes, mode does not

This section proves the nine numbered derivatives from Table 3. The numbers

preceding each derivative correspond to Propositions 1 through 9 below.

Proposition 1: If κL rises, the optimal indemnity i* rises [∂i*/∂κL>0].  Recall:
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This is positive, since both bracketed terms are positive. [Q.E.D.]

Proposition 2: If κL rises, then the premium pi* rises [∂pi*/∂κL>0].  The premium

covers both the cost x of treating Hs and the indemnity i* paid to Ls in lieu of treatment:

[5] *ixp LH*i π+π=
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κL only enters the right-hand side of this expression through i*, so

(2.1) 
∂
∂κ

∂
∂

∂
∂κ

π
∂
∂κ

p p
i

i ii

L

i

L
L

L

* *

*
* *

= = > 0

This is positive because πL>0 and, from Proposition 1, ∂i*/∂κL>0. [Q.E.D.]

Proposition 3: If κL rises, welfare under the optimal indemnity contract declines

[∂Ûi*/∂κL<0].  In logarithmic form, Ûi*, from [5] becomes:
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Dividing the right-hand side by ∂i*/∂κL and ∂pi*/∂i*=πL leaves the sign unchanged, so:
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Since y0-pi*<y0-pi*+i*, this is negative.  A rising cure rate for Ls decreases welfare.

[Q.E.D.]

Proposition 4: If κL rises, the optimal deductible d* rises [∂d*/∂κL<0]. Recall:

[11]
( )( )

( ) H

H xy
d

πφφ
πφ

1
1

* 0

−−
−−

= , where kLeκφ = . Differentiating:

(4.1) 
( )

( ) [ ]∂
∂κ

∂
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∂φ
∂κ

π

φ φ π
κd d y x

ke
L L

H

H

kL
* *

=








 ×









 =

−

− −













× >0

1
0

This is positive because both bracketed terms are positive, as can be seen by inspection.

[Q.E.D.]
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Proposition 5: If κL rises, the premium pd* falls [∂pd*/∂κL<0].  The premium

covers the cost x of treating Hs, minus the deductible d* paid out-of-pocket by patients:

[6] pd*=πHx-πHd*

κL only enters the right-hand side of this expression through d*, so

(5.1) 
∂
∂κ

∂
∂

∂
∂κ

π
∂
∂κ

p p
d

d dd

L

d

L
H

L

* *

*
* *

= = − < 0

This is negative because πH>0 and, from Proposition 4, ∂d*/∂κL>0.  The premium falls

because more of the treatment cost is being borne out-of-pocket by patients. [Q.E.D.]

Proposition 6: If κL rises, then welfare under the optimal deductible contract

declines [∂Ûd*/∂κL<0]. In logarithmic form, Ûd*, found in [6], becomes:

(6.1) ( ) ( ) ( ) ( )k*dpylnpyln1Û HHS*d0H*d0H*d κπ−π−−−π+−π−= ,

where p x dd H H* *= −π π .  Differentiating:
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Dividing the right-hand side by ∂d*/∂κL and -∂pd*/∂d*=πH leaves the sign unchanged, so:

(6.3) 
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Since y0-pd*>y0-pd*-d*, this is negative.  A rising cure rate for Ls decreases welfare.

[Q.E.D.]

Proposition 7: If κL rises, then welfare under the zero-insurance mode is

unchanged [∂Ûz/∂κL=0].  By assumption, treatment is prohibitively expensive without



38

insurance.  So, in zero-insurance mode, changes in κL will have no effects on ex post

income or on welfare.

[7] ( ) ( ) ( )[ ] ( )$ ; ; ;U U y w U y w k U y w kz W H L S= + + − = −π π π π0 0 0

κL does not enter into this equation, so ∂Ûz/∂κL=0.  Welfare is unaffected by changes

in κL. Also, with no insurance, there are no indemnities, deductibles, or premiums to

consider. [Q.E.D.]

Proposition 8: If κL rises, the premium under the full-insurance mode is

unchanged [∂pf/∂κL=0]. From [8] the full-insurance premium equals to cost of treating

all Hs and Ls:

[8] xp Sf π=

κL does not enter into this equation, so changes in κL leave the premium unaffected.

[Q.E.D.]

Proposition 9: If κL rises, then welfare under the full-insurance mode rises

[∂Ûf/∂κL>0].  Here, all Hs and Ls are treated, and all subscribers pay an equal premium

pf=πSx.  Since Ls are treated, a higher cure rate κL among that group improves welfare by

increasing the number of Ls who recover from the disease.  Proposition 8 tells us that

there are no changes in premiums; thus, there are no changes in ex post financial position

of any agents. Recall:

[8] ( ) ( )$ ;U U y p w kf W f S H H L L= − − − −π π π κ π κ0  where xp Sf π=

When κL rises, the only change in welfare comes from the increased cure rate among

Ls, so:

(9.1) ∂Ûf/∂κL=πLk>0
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We are treating all sick people, so there is no need to compensate anyone for forgoing

treatment.  Thus, ex post, marginal utility of wealth is uniform across individuals. The

full-insurance mode is the only one where a rising cure rate for Ls increases welfare.

This makes intuitive sense, since it is the only mode in which Ls actually get to take

advantage of medical science’s greater capacity to cure their illnesses. [Q.E.D.]

A.2 κL changes, mode changes

Section A.1 demonstrated how changes in κL affect contract parameters and welfare if

the mode remains unchanged.  In contrast, this section explores how changes in κL can

affect which mode is optimal.  Given a set of primitive assumptions, changes in κL can

lead the market through a sequence of modes, but only in particular orders.  Figure 2

illustrates how modes change, and Table 4 shows the set of possible (and impossible)

mode sequences. Propositions 10-13 here demonstrate why certain sequences are

impossible, as follows:

10: Ceteris paribus, as κL rises:
Z cannot precede D
Z cannot precede I
F cannot precede Z
F cannot precede D
F cannot precede I

11: Ceteris paribus, as κL rises, D cannot precede I
12: As κL→0, F cannot be preferred to I or D
13: As κL→κH, D can’t be optimal

Figure 2 shows how the optimal insurance contract is determined for different κL.

The optimal contract has utility of Û=MAX[Ûi*, Ûd*, Ûz, Ûf].  In Figure 2, for very small

κL, Ûi* is higher than welfare under the other the other three contract modes so we begin

in mode I.  Then, after the I-curve cuts the D-curve from above, the deductible contract is



40

preferable to the indemnity contract. Then the D-curve cuts the Z-curve from above, and

zero insurance becomes optimal.  Finally, the Z-curve cuts the F-curve from above, and

full insurance is optimal.

Each curve is a continuous function of κL, so Û is also a continuous function of κL.

Thus, a change of mode is not marked by a discrete change in welfare. And if there is a

switch from one mode to a second, it must be true that the slope of the second curve is

greater than the slope of the first curve at the point where the modes switch.  Knowing

this allows us to rule out five possible mode switches in Proposition 10 and another

switch in Proposition 11.

Proposition 10: A rise in κL cannot lead to a shift from Z (zero-insurance) to D

(deductible policy) or I (indemnity policy); nor can a rise in κL lead to a shift from F

(full insurance) to Z (zero insurance), D (deductible policy) or I (indemnity policy).

The proofs are evident from Table 3 and illustrated by Figure 2. The Z-curve is always

flat, while the D- and I-curves are always downward-sloping. Thus the Z-curve can never

cut the D- and I-curves from above, so the mode will never switch from Z to D or to I.

Similarly, the F-curve is upward-sloping and, so, can never cut the Z-, D-, or I-curves

from above; a rise in κL can never lead to an abandonment of full insurance. [Q.E.D]

Proposition 11: A rise in κL cannot lead to a shift from D (deductible policy) to I

(indemnity policy).  This proposition requires a lengthy proof consisting of 5 lemmae

and is derived from a slightly rearranged version of the deductible/indemnity boundary:

[14]
[ ]

[ ] [ ] *i*d1
HH

LL ÛÛiff1
)1(

1
LH <

=
>

<
=
>

φ×π+π−φ
π−φπ+

−π+π
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If πL≥πH, the best indemnity policy will never be preferred to the best deductible

policy.  So, we limit our analysis here to the case where πL<πH. The indemnity policy is

preferred to a deductible policy if κL is small, and the deductible policy may or may not

be preferred to the indemnity policy at higher levels of κL.

Notation

For ease of notation, we redefine the bracketed expressions in [14] as u, v, and w:

(11.1) 
[ ]

[ ] [ ] wv
u

LH
HH

LL

×
=

×+−
−+

−+ 1)1(
1

ππφππφ
πφπ

Using this expression, we prove the five lemmae that comprise this proposition.

Throughout this proof, we adopt the convention that q'= φ∂∂ /q  and q?= 22 / φ∂∂ q  for any

function q(φ).

Graphic Description

Figure 4 represents the five lemmae in the case where πL<πH.

Lemma 1: If κL=0, then u=vw=1.
Lemma 2: u is linear and upward-sloping in φ , with a slope of π L.
Lemma 3: vw is upward-sloping in φ .

Lemma 4: ( )lim
φ

π
→

′ = ′ =
1

vw u L .

Lemma 5: Over the relevant range φ∈[1,∞), there exists at most one value ~φ

where (vw)?=0.  If such a point exists, (vw)?>0 for φ φ< ~  and (vw)?<0 for

φ φ> ~ .

In Figure 4, the inflection point occurs at ~φ =1.909. So, as φ rises from its lowest

value of 1, vw initially rises at an increasing rate, while u rises at a constant rate. Thus, an

epsilon beyond φ=1, vw>u—meaning that an indemnity policy is welfare-superior to a

deductible policy.  After φ passes the inflection point at φ=1.909, the slope of vw begins
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to decline.  In this particular case, vw eventually cuts u from above; to the right of the

intersection, a deductible policy is preferred to an indemnity policy.

Figure 4
πL <πH

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 11 21 31 41 51 61

φ

u
 a

n
d

 v
w

k=20
π L=1%
π H=10%
κ L= [0%,20%]
inflection point: φ=1.909

( )[ ] [ ]vw H L
H L= − + × + −φ π π φ π π1 1

u L L= + −1 φπ π

Algebraic Proof

To prove the propositions below here, it is useful to know the following relationships:

Table 7
Relationships between u, v, w, and their derivatives

uu1
1u LL

′−′φ+=
π−φπ+= Lu π=′ 0=′′u

( )
( )v1v

1v HH

′−−′φ=
π+π−φ= Hv π−=′ 1 0=′′v

1−+= LHw ππφ ( )
1

2

)(

1
−

−+

′−′=

−+=′

φ

φππ ππ

wvu

w LH
LH ( )( )

2

1

3

))(1(

)1(

12

−

−

−+

′′−′−′−′=

′−′−′=

−+−+=′′

φ

φ

φππππ ππ

wvuvu

wvu

w LH
LHLH

Now we demonstrate the five lemmae:

Lemma 1: If κL=0, then u=vw=1. φ=exp(κLk), so if κL=0, φn=1 for all n. If φ=1,

(11.2) u=[1+πLφ-πL]=[1+πL(1)-πL]=1, and
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(11.3) ( )[ ] [ ] ( )[ ] [ ]vw H H H H
H L= − + × = − + × =+ −φ π π φ π ππ π1 11 1 11

Lemma 2: u is linear and upward-sloping in φ , with a slope of π L. This is evident

from inspection, since, as the table above shows, u'=πL and u?=0.

Lemma 3: vw is upward-sloping in φ . The slope of vw is:

(11.4) ( )vw v w vw′ = ′ + ′

Into this, substitute ( )′ = ′ − ′ −w u v wφ 1  from Table 7:

(11.5) 
( ) ( )

[ ][ ] [ ]
vw v w v u v w

v w v vu w

′ = ′ + ′ − ′

= − + >

−

− −

φ

φ φ

1

1 11 0' '

This is positive because both bracketed terms are positive. vw slopes upward.

[Q.E.D.]

Lemma 4: ( )lim
φ

π
→

′ = ′ =
1

vw u L .  From Table 7, restate the previous equation as:

(11.6) 
( ) ( )

( ) ( )[ ]( )
vw v w v u v w

H H H H L
H L H L

′ = ′ + ′ − ′

= − + − + + −

−

+ − + −

φ

π φ φ π π π π φπ π π π

1

1 21 1 1
,  and

(11.7) 

( ) ( ) ( )[ ]( )
( ) [ ]( )

lim
φ

π π π ππ φ φ π π π π φ

π π π π π

π

→

+ − + −′ = − + − + + −

= − + − + + −

=

1

1 21 1 1

1 1 1

vw H H H H L

H H H H L

L

H L H L

So, the slope of vw is equal to the slope of u at φ=1.

Lemma 5: Over the relevant range φ∈[1,∞), there exists at most one value ~φ

where (vw)?=0.  If such a point exists, (vw)?>0 for φ φ< ~  and (vw)?<0 for φ φ> ~ .  In

general:

(11.8) (vw)?=v?w+v'w'+v'w'+vw?
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From Table 7, we know that v?=0, so:

(vw)?=2v'w'+vw?, so

(11.9) ( ) wv2wviff0vw ′′−
<
=
>
′′

<
=
>″  [Q.E.D.]

Proposition 12: As κL→0 (or φ→1), Ûi*>Ûf  and Ûd*>Ûf.  Thus, as κL climbs from

0 to πH, the corresponding sequence of modes cannot begin with F.

[5] ( ) ( )$ ;* *U U y p w ki i S H H L L= − − − −0 π π κ π κ  , where ** ixp LHi ππ += , and

[8] ( ) ( )$ ;U U y p w kf f S H H L L= − − − −0 π π κ π κ  , where xp Sf π= .

Subtracting,

(12.1) ( ) ( )$ $ *; ;*U U U y x i w U y x x wi f H H H H− = − − − − −0 0π π π π

If i*<x, this equation is positive, so I is preferred to F.  We can make κL arbitrarily

close enough to 0 (and, therefore, φ close enough to 1) that i*<x.  So,

(12.2) ( ) ( )lim $ $ ; ;*
κ

π π π
L

U U U y x w U y x x wi f H H L
→

− = − − − −
0

0 0 >0

At very low cure rates for Ls, it must be true that an indemnity policy is preferred to

full insurance [or Ûi*>Ûf].  Of course, parameters may be such that the range of κL where

this is so is trivially small.  A similar proof would show that D is also preferred to F as κL

approaches 0, so full insurance is not better than the third in the preference ranking

among modes. We leave this proof to the reader. [Q.E.D.]

Proposition 13: As κL→κH, Ûd*<Ûz.  Thus, as κL approaches κH, at least one

mode (Z) will be preferred to D. Recall:

[7] ( ) ( )kwpyUU LHHHSdd κπκππ +−−−= ;ˆ
*0* , where p x dd H H* *= −π π , 

and



45

[8] ( )$ ;U U y w kz S= −0 π

From these equations, we can deduce that:

(13.1) ( )[ ] ( )[ ]
κ κ

π π
L H

U U U y w k U y p w kz d S d S
→

− = − − − − >lim $ $ ; ;* *0 0 0

So, as κL approaches κH, it must be true that Ûz>Ûd*. Thus, the sequence will not

conclude with a deductible policy as κL rises toward κH.  Experimentation with numbers

suggests that a sequence cannot conclude with I, but we leave that proof for a later paper.

A.3  κH changes, mode does not

This section proves the nine numbered cells from Table 5, restated here in equation

form.  Each cell is a derivative showing how a change in κL affects the optimal

indemnity, deductible, premium, and welfare under each mode The numbers preceding

each derivative correspond to Propositions 14 through 22 proven below.

Proposition 14: If κH rises, the optimal indemnity i* is unchanged [∂i*/∂κH=0].

Recall:

[10]
( )( )

( ) L

H xy
i

πφ
πφ

11
1

* 0

−+
−−

= , where kLeκφ =

Since κH does not enter into this expression, therefore, changes in κH do not affect i*.

[Q.E.D]

Proposition 15: If κH rises, the premium pi* is unchanged [∂pi*/∂κH=0].  Recall:

[5] ** ixp LHi ππ +=

Again, κH does not enter into this expression, so the premium is unchanged. [Q.E.D]
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Proposition 16: If κH rises, welfare under the optimal indemnity contract rises

[∂Ûi*/∂κH>0].  Recall:

[5] ( ) ( )$ ;* *U U y p w ki i S H H L L= − − − −0 π π κ π κ  , where p x ii H L* *= +π π , 

so

(16.1) 0
ˆ

* >= k
U

H
H

i π
∂κ
∂

Thus, under I, an improved ability to cure Hs increases welfare. [Q.E.D]

Proposition 17: If κH rises, the optimal deductible d* is unchanged [∂d*/∂κH=0].

Recall:

[11]
( )( )

( ) H

H xy
d

πφφ
πφ

1
1

* 0

−−
−−

= , where kLeκφ =

Since κH does not enter into this expression, therefore, changes in κH do not affect d*.

[Q.E.D]

Proposition 18: If κH rises, then the premium pd* is unchanged [∂pd*/∂κH=0].  The

premium covers the cost x of treating Hs minus the deductible d* paid out-of-pocket:

[6] ** dxp LHd ππ −=

Again, κH does not enter into this expression, so the premium is unchanged . [Q.E.D]

Proposition 19: If κH rises, welfare under the optimal indemnity contract rises

[∂Ûd*/∂κH>0]. Recall:

[6] ( ) ( )$ ;* *U U y p w kd d S H H H L= − − − +0 π π κ π κ , where p x dd H H* *= −π π ,

so

(19.1) 0
ˆ

* >= k
U

H
H

d π
∂κ
∂
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Thus, under D an improved ability to cure Ls increases welfare. Note, that this derivative

is identical to that in the case of an indemnity contract. [Q.E.D]

Proposition 20: If κH rises, then welfare under the zero-insurance mode remains

unchanged [∂Ûz/∂κH=0].  With zero insurance, expected utility is:

[7] ( )$ ;U U y w kz S= −0 π

κH does not appear anywhere in this equation, so ∂Ûz/∂κH=0. [Q.E.D]

Proposition 21: If κH rises, the premium under the full-insurance mode rises

[∂Ûf/∂κH>0]. From [8] the full-insurance premium is the cost of treating all Hs and Ls:

[8] xp Sf π=

κH does not enter into this equation, so changes in κH leave the premium unaffected.

[Q.E.D]

Proposition 22: If κH rises, then welfare under the full-insurance mode rises

[∂Ûf/∂κH>0].  Recall:

[8] ( ) ( )$ ;U U y p w kf f S H H L L= − − − −0 π π κ π κ , where xp Sf π=

From Proposition 21, a rise in κH leaves the premium unaffected.  So the only change

in welfare comes from the increased cure rate among Hs:

(22.1) ∂Ûf/∂κH=πHk>0

All sick people are treated, so there is no need to compensate anyone for forgoing

treatment. Ex post, marginal utility of wealth is uniform across individuals. Note that this

derivative is identical to those in Propositions 16 and 19. [Q.E.D]
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A.4  κH changes, mode changes

This section specifies conditions under which a change in κH can give rise to a change

in the mode of the optimal contract.  As in section A.2, a change in mode requires that the

first curve cut the second curve from above.

Proposition 23: A rise κH can shift the optimal contract mode from Z to I, D, or

F.  Ceteris paribus, no other shifts are possible.  We will prove the first part of this

proposition by providing numerical examples of shifts from Z to I, D, and F.  First,

however, we will easily dispense with the second part of the proposition.

We know from Propositions (17), (20), and (23) that:

(23.1) 0
ˆˆˆ

* >=== k
UUU

H
H

f

H

d

H

i π
∂κ

∂

∂κ
∂

∂κ
∂

From Proposition (21), we know that:

(23.2) 0
ˆ

=
H

zU
∂κ
∂

Limitations on possible shifts can easily be seen from these two equations.  These

equations do not allow us to rule out shifts from Z to I, D, and F as κH rises; under these

circumstances, the relative attractiveness of I, D, and F rises while that of Z does not.  On

the other hand, changes in I, D, and F will be identical, since the derivatives of all three

utility functions are identical.  In other words, a rise in κH will improve the expected

welfare of I, D, and F identically, thus leaving the preference ordering among these three

modes unchanged. [Q.E.D]


